skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Drnevich, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    We reframe common tasks in jet physics in probabilistic terms, including jet reconstruction, Monte Carlo tuning, matrix element – parton shower matching for large jet multiplicity, and efficient event generation of jets in complex, signal-like regions of phase space. We also introduce Ginkgo, a simplified, generative model for jets, that facilitates research into these tasks with techniques from statistics, machine learning, and combinatorial optimization. We also review some of the recent research in this direction that has been enabled with Ginkgo. We show how probabilistic programming can be used to efficiently sample the showering process, how a novel trellis algorithm can be used to efficiently marginalize over the enormous number of clustering histories for the same observed particles, and how the dynamic programming and reinforcement learning can be used to find the maximum likelihood clusterinng in this enormous search space. This work builds bridges with work in hierarchical clustering, statistics, combinatorial optmization, and reinforcement learning. 
    more » « less